
INFORMATION
Volume 15, Number 12, pp.252-258

ISSN 1343-4500
c©2012 International Information Institute

An Improved Theoretical Bound for Minimum CDS

in Wireless Ad Hoc Network

Jun Li, Xiaofeng Gao*
Shanghai Jiao Tong University, Shanghai 200240, China

lijun2009@sjtu.edu.cn, *corresponding author: gao-xf@cs.sjtu.edu.cn

Abstract

Since wireless ad hoc network lacks of physical network infrastructure, we can choose a connected
dominating set (CDS) as the virtual backbone to improve the network performance. There exist many
algorithms to find a minimum CDS in UDG and these algorithms usually include two phases. The first
phase is to choose a maximal independent set (MIS) and the second phase is to connect them. In the
performance analysis of those algorithms, the ratio of the size of selected MIS to the size of the optimal
minimum CDS, which is also called the theoretical bound to approximate CDS, plays an important role
to evaluate the effectiveness of the algorithms. Currently the best-known result of this ratio is mis(G) ≤
3.4305mcds(G)+4.8185. In this paper, we improved it by showing that mis(G) ≤ 3.3371mcds(G)+3.6741.
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1 Introduction

A wireless ad hoc network consists of many nodes each of which is not only a mobile host but also a router.
Owing to the own special properties, wireless ad hoc networks are often superior to traditional computer net-
works in many application areas, including traffic control, military applications, etc. However, such networks
lack of physical infrastructures, resulting the difficulty to achieve scalability and efficiency. To solve the weak-
ness, we usually select a virtual network infrastructure which is called virtual backbone to take the charge of
routing for other nodes, such that the network topology will form a hierarchical structure and become more
effective for network management.

To simplify our research, we assume that every node has the same transmission range. In this situation,
we use Unit Disk Graph (UDG) to describe the network. An undirected graph G = (V,E) is called a UDG
only if every node has a broadcasting range 1. For two arbitrary vertices v1, v2 ∈ V , there exists an edge
(v1, v2) ∈ E only when the distance between v1 and v2 is at most 1. When constructing the virtual backbone,
a connected dominating set (CDS) of the given graph is often our first choice. Given a graph G = (V,E), a
dominating set (DS) is a subset of V such that every vertex in the graph is either in this subset or adjacent
to a vertex in the subset. Furthermore, a CDS is a connected DS, which means it can induce a connected
subgraph. Obviously, the smaller size of a CDS results faster routing process and better network performance.
However, Clark et.al. [1] proved that finding minimum CDS (MCDS) even in UDG is NP-hard. Thus lots
of approximation algorithms for MCDS came out. These algorithms usually choose an maximal independent
set (MIS) from UDG as a dominating set (DS) first, and then add some extra nodes to connect them. An
MIS in a graph G = (V,E) is a subset M ⊆ V such that for arbitrary vertices v1, v2 ∈ M , the distance
between v1 and v2 is more than 1, and if we insert a node u from V \M into M , M will not be an MIS any
more. From the definition of MIS, we can easily prove that an MIS is also a DS. Therefore, the performance
of the approximation algorithms highly depends on the relationship between the size of MIS and the size of
MCDS in G. The approximation ratio mis(G)/mcds(G) is called the theoretical bound to approximate CDS,
where mis(G) (respectively, mcds(G)) is the size of MIS (respectively, MCDS). Consequently, analyzing the
theoretical bound is quite important to the analysis of such algorithms.

A lot of studies on the theoretical bound have been done before. Based on the fact that the neighborhood
area of any node can contain at most five independent points, Wan [7] showed mis(G) ≤ 4mcds(G) + 1.
Wu [6] shown that the neighborhood area of any edge can contain at most eight independent points, and
they gave a result as mis(G) ≤ 3.8mcds(G) + 1.2. Along this direction, Wan [8] improved a better result
that is mis(G) ≤ 3 2

3mcds(G) + 1. Later, Vahdatpour [9] claimed that mis(G) ≤ 3mcds(G) + 3. However,
the proof is far from a complete one. With approach of area and Voronoi division, Funke [2] showed that
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mis(G) ≤ 3.453mcds(G) + 8.291. However, the proof is also not complete and Gao [3] gave the detail proof.
Recently, Li [4] improved the result into mis(G) ≤ 3.4305mcds(G) + 4.8185.

In this paper, we will give a better theoretical bound to approximation CDS , which is mis(G) ≤
3.3371mcds(G)+3.6741.To prove this bound, we first make our problem equivalent to a math problem of disk
packing in Section 2. Then, we introduce the conception of effective area, and give the maximal condition
that refers to the condition of packing maximal independent points in the neighborhood area of MCDS in
Section 3. According to the maximal condition, we also did a lot of work on the relation between the length
of boundary and the size of MIS in Section 4. Finally, Section 5 gives the conclusion and future works.

2 Preliminary

As mentioned in Section 1, calculating the theoretical bound of mis(G)/mcds(G) has significant importance
in the performance analysis of those two-phases approximation. Obviously, the key of this problem is trying
to get the size of MIS and the size of MCDS in a UDG. Since finding the MCDS in a given UDG is NP-hard,
we can estimate the size of MIS for a given MCDS. Let γ and α be the given size of MCDS and the size of
MIS. It is easy to see that α = mis(G), while γ = mcds(G).

Firstly, we define diskr(v) as the closed disk of radius r centered at v. Let Ω(1) =
⋃

o∈MCDS

disk1(o). From the

definition of MCDS, Ω(1) represents the whole dominating area of the MCDS. All vertices in the corresponding
UDG are located insides this area, including all vertices in any MIS. Therefore, our work is to find the MIS
in Ω(1). Considering the characteristic of MIS, for two arbitrary vertices v1, v2 ∈ MIS, disk0.5(v1) will never
intersect with disk0.5(v2). Also, ∀v ∈ MIS, disk0.5(v) is always located insides Ω(1.5) =

⋃
o∈MCDS

disk1.5(o).

Consequently, calculating the possible number of vertices in MIS is equivalent to estimating the largest number
of these disks located insides Ω(1.5) . Hence, our problem can be simplified as follows:

Problem: How many disjoint disks with r = 0.5 can locate within the area of Ω(1.5)? In addition, the centers
of every disk must locate insides Ω(1).

3 Maximal Condition

To place more disks with r = 0.5 in the area of Ω(1.5), the disks should be arranged in the tightest way. It
is easy to know that for two disks, the tightest arrangement is to make them tangential. For three disks, the
tightest arranged way is to make every two disks tangential as shown in Fig. 1.

Routine 1 If we ignore the boundary of Ω(1.5), we can construct the tightest arrangement as follows:

(1) Choose an arbitrary vertex v0 ∈ MIS, and define Ω = disk0.5(v0).

(2) Add a new vertex v1 , and make disk0.5(v1) tangential with disk0.5(v0). Ω = Ω
⋃

disk0.5(v1).

(3) Add a new vertex vi and make disk0.5(vi) tangential with two adjacent disks in Ω. Ω = Ω
⋃

disk0.5(vi).

(4) Repeat step (3).

Figure 1: Example of tightest arrangement.
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From Fig. 1 we find that there will always be some gaps among disks even in the tightest arrangement.
Let s0

g denote the gap area in Fig. 1, then it is easy to see that

s0
g = area(i1i2i3) =

√
3

4
− π

8

Because of the existence of gaps, applying
area(Ω(1.5))

area(disk0.5(v))
to estimate α is a really rough method. To make

a better result, we should take the effect of those gaps into account. That is to say, we need to make such
disks share the gaps in some way. Obviously, Voronoi division is a nice choice to reach our purpose, but we
will use another way in this paper.

3.1 Effective Area

According Fig. 1, the gap area(i1i2i3) should belong to three disks around it. Hence, each disk owns one
third of the gap. Moreover, we can easily notice that ∠o1o2o3 = π

3 . Thus, disk0.5(o2) can have 6 ( 2π
π
3

) gaps
around. As the result, disk0.5(o2) owns 2 on average. In order to simplify the description, we can introduce
the conception of effective area.

Definition 1 (Effective Area) For any gap formed in the process of placing disks in Ω(1.5), it will be uni-
formly shared by the disks around it. Then the effective area of disk0.5(v) is

seff
v =

π

4
+

∑
i

si
g

pi
,

where π
4 is the area of disk0.5(v), i refers to the number of gaps around disk0.5(v), si

g means the area of the
i-th gap, and pi is the number of disks around the i-th gap.

It is easy to find that if Ω(1.5) is constructed by Routine 1, the effective area of a disk0.5(v) is

π

4
+

∑
i

si
g

pi
=

π

4
+ 6×

s0
g

3
=
√

3
2

.

And we denote it with seff
(1) .

3.2 Considering the Boundary

All the discussion above ignores the boundary of Ω(1.5). When we take the boundary into account, Routine 1
will not work anymore, because it is only used to guarantee the tightest arrangement of disks in the inner
layer, not the outmost layer. To estimate the maximal number of disks in Ω(1.5), we can divide the process
into two steps:

(1) Make the outmost layer of disks tightest arranged. As all centers of those disks are located insides Ω(1),
we can make all the centers of disks laying in outmost layer located on the boundary of Ω(1), as shown
in Fig. 2.

Figure 2: An example of making the outmost layer of disks tightest arranged.
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(2) Deal with the inner space of Ω(1.5) according to Routine 1. To avoid the shortcoming of Routine 1, we
can add an extra condition that the result can be non-integer. That is to say, we can simply get the

result by
∑

seff

√
3/2

.

Then we can get the maximal condition.

Routine 2 The condition to find an upper bound of the size of MIS can be as follows:

(1) Make the boundary of Ω(1) placed as many vertices that belong to MIS as possible.

(2) Apply
∑

seff

√
3/2

to calculate the number of inner vertices that belong to MIS.

Note: From Routine 2, what we get is an upper bound of the size of MIS, and we don’t care whether the
result can be reached in reality.

4 Main Results

From Routine 2, we can partition MIS into two subsets I1 and I2 defined by

I1 = MIS\I2,

I2 = o ∈ MIS : o is located on the boundary of Ω(1).

Let α1 and α2 be the size of I1 and I2 respectively. The next lemma gives the maximal value of α2.

Lemma 1 The length of ∂Ω(1) is at least π
3 × α2 , where ∂Ω(1) refers to the boundary of Ω(1).

Proof: After analyzing the boundary of Ω(1) , we can find there are only two kinds of elements on the
boundary. They are arc whose radius is 1 and point of junction that connect two arcs. In order to mark
different position on a circle, we can build polar coordinates on each disk as Fig. 3 showing. Let ϕ denote
the different position and the value of ϕ increasing along counterclockwise direction and decreasing along
clockwise direction. When a point walks along the boundary of Ω(1) , we can give it a property ϕ denoting
the position on the circle where the point is being on. In the process of walking, the value of ϕ changes
continuously on arcs while jumpily on points of junction. From Fig. 3 we can easily see that ∆ϕ on points of
junction is equal to θ. And the value of θ is related to dist(o1, o2). And the value of ∆ϕ is negative if the
point walks along the boundary in negative direction. The definition of direction of boundary is as follow:

Definition 2 (The Direction of Boundary) When a point walks along a boundary in a direction, the
direction is called the positive direction (negative direction) if the area formed by the boundary is always on
its left (right) side.

Figure 3: An example of boundary formed by two disks with dist(o1, o2) ≥ 1

All in all, to make the size of MIS largest, the distance between any two adjacent vertices in MCDS is
needed to be equal to 1. In this situation, dist(o1, o2) ≥ 1 and θ will be at least π

3 .
By Routine 2, we can let dist(v1, v2) = 1 for any two adjacent vertices v1, v2 ∈ I2. To prove Lemma 1, we

first prove that the length of the shorter path between v1 and v2 on the boundary is at least π
3 . There are

two kinds of situation to discuss.
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(1) If v1 and v2 are on a same circle, then the length of the arc between v1 and v2 (denote it by |arc(v1, v2)|)
is equal to π

3 .

(2) When v1 and v2 are located on different circles, there will have several points of junction on the path
between v1 and v2. Let q denote the number of those points. In this situation, we can first calculate
dist(v1, v2

′) with the length of the path between v1 and v
′

2 being π
3 .

(i) If q = 1, as in Fig. 3, the path between v1 and v
′

2 is arc(A0A1) + arc(A1A2). Hence,∣∣∣arc(v1, v
′

2)
∣∣∣ = |arc(A0A1) + arc(A1A2)| =

π

3
.

The Euclidean distance between v1 and v
′

2 is
∣∣∣−−−→A0A2

∣∣∣ , and
∣∣∣−−−→A0A2

∣∣∣ =
∣∣∣−−−→A0A1 +

−−−→
A1A2

∣∣∣. As radiuses
of arc(A0A1) and arc(A1A2) are the same and equal to 1, we can move them to a same circle with
r = 1 as Fig. 4 showing. Comparing Fig. 4 with Fig. 3, we can conclude that ∠A

′

1oA1 = θ and∣∣∣arc(A0A1) + arc(A
′

1A2)
∣∣∣ = π

3 . As θ > π
3 , there will be some free space between A2 and A0.

Because of the translation invariance of vector,

dist(v1, v
′

2) =
∣∣∣∣−−−→A0A1 +

−−−→
A

′

1A2

∣∣∣∣ =
∣∣∣−−−→A0A1 +

−−→
BA0

∣∣∣ =
∣∣∣−−→BA1

∣∣∣ ,

where
−−→
BA0//

−−−→
A

′

1A2 . On the circle, we can find point C making |arc(CA0)| =
∣∣∣arc(A

′

1A2)
∣∣∣ . Thus,

|arc(CA1)| = π
3 and

∣∣∣−−→CA1

∣∣∣ = 1 .In ∆A0CA1 and ∆A0BA1,
∣∣∣−−→CA0

∣∣∣ =
∣∣∣−−→BA0

∣∣∣ ,∠A1A0C > ∠A1A0B.
According to law of cosines in triangle, it is easy to know∣∣∣−−→BA1

∣∣∣ <
∣∣∣−−→CA1

∣∣∣ = 1.

Then, dist(v1, v
′

2) < 1 . Because dist(v1, v2) = 1, v
′

2 is located on the path from v1 to v2. Therefore,
|arc(v1, v2)| >

∣∣∣arc(v1, v
′

2)
∣∣∣ = π

3 .

(ii) For q > 1, it is similar with case (i).

From situation (1) and (2) above, we can conclude that |arc(v1, v2)| is always at least π
3 . Then the value

of α2 is at most |∂Ω(1)|
π/3 and

∣∣∂Ω(1)
∣∣ ≥ π

3 α2. Thus, Lemma 1 follows.

Figure 4: The model to calculate |arc(v1, v2)|

Theorem 1 Let α and γ denote the size of MIS and the size of MCDS in a UDG. Then

α ≤ 3.3371γ + 3.6741
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Proof: Firstly, it is easy to know that the length of Ω(1) is at most 2π +
2π

3
(γ − 1). Considering Lemma 1,

we can get the maximal value of α2:

α2 ≤
2π + 2π

3 (γ − 1)
π
3

= 2γ + 4. (1)

From Fig. 2 we can see that for v ∈ I2, it is very complex to calculate seff
v . However, it is relatively easy

to calculate Aeff
v

⋂
Ω(1) (Aeff

v is the corresponding region of seff
v ), which is shown in Fig. 5.

Figure 5: The minimal area of disk0.5(v)
⋂

Ω(1)

When node v walks along the boundary of Ω(1) , the area of disk0.5(v)
⋂

Ω(1) has the minimal value that is
equal to area(disk0.5(v)

⋂
disk1(o1)). Also, there exist two neighbor disks around disk0.5(v) on the boundary

of Ω(1). Hence, ∣∣∣Aeff
v

⋂
Ω(1)

∣∣∣ ≥ 2
3
s0

g + area(disk0.5(v)
⋂

disk1(o1))

Next, we will calculate area(disk0.5(v)
⋂

disk1(o1)).

Figure 6: Calculating min area(disk0.5(v)
⋂

disk1(o))

As shown in Fig. 6, we can get the result

area(disk0.5(v)
⋂

disk1(o)) = area(vi2x1i1) = ϕ +
β

4
− 1

2
sin 2ϕ− 1

8
sin 2β,

where

ϕ = arcsin(
√

15
8

); β = arcsin(
√

15
4

)

Hence, ∣∣∣Aeff
v

⋂
Ω(1)

∣∣∣ ≥ ϕ +
β

4
− 1

2
sin 2ϕ− 1

8
sin 2β +

√
3

6
− π

12
= 0.3776 = seff

(2) . (2)

By Routine 2,

area(Ω(1)) ≥
∑
v∈I2

Aeff
v

⋂
Ω(1) + α1s

eff
(1) .
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According to the equation (2),

area(Ω(1)) ≥ α1s
eff
(1) + α2s

eff
(2) = αseff

(1) + α2(s
eff
(2) − seff

(1) ) (3)

It is easy to prove by induction on that

area(Ω(1)) ≤ π + (
π

3
+
√

3
2

)(γ − 1). (4)

The inequalities (1), (3), (4) imply that

α ≤
π
3 + 3

√
3

2 − 2seff
(2)

seff
(1)

γ +
2π
3 + 3

√
3

2 − 4seff
(2)

seff
(1)

≈ 3.3371γ + 3.6741.

Thus, Theorem 1 follows.

5 Conclusion

In this paper, we presented a better relation for MIS and MCDS in a UDG with more consideration of the
boundary effect. We use the method of effective area to deal with packing problem in the dominating area
of MCDS, and then replace the originally used hexagon with this new area to calculate a smaller ratio. The
final result is mis(G) ≤ 3.3371mcds(G) + 3.6741. To apply geometry to our problem, we assume the distance
between two points in MIS is greater or equal to 1 and actually we let it equal to 1 to reach the closest
packing. If we remove the condition of “equal to 1” above, the result will be better. Thus, we still have a lot
of work to do to get the real “theoretical bound”.
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